Interlake Tunnel Meeting with Property Owners

July 14, 2014
Agenda

1. Introductions
2. Purpose of meeting
3. Purpose of the project
4. Project information review
 A. Environmental process initiated
 B. Conceptual horizontal and vertical alignment
 C. Construction methodologies
 D. Project schedule
5. Water supply protection plan
 A. MCWRA commitment to property owners
6. Groundwater data collection initiative
 A. Develop baseline conditions
 B. Data for project design considerations
Introductions

Project Owner

Program Management

Conceptual Engineering

Environmental services
Purpose of meeting

1. Share information with property owners in vicinity of proposed tunnel alignment
2. Obtain information from property owners regarding wells and water supply
Purpose of the project

The Monterey County Water Resources Agency manages, protects, and enhances the quantity and quality of water and provides specified flood control services for present and future generations of Monterey County.

The Interlake Tunnel is a proposed beneficial project under the auspices of MCWRA to provide flood control and enhance the quantity of water supply for Monterey County.
Project objectives

• Minimize flood releases from Nacimiento reservoir and reduce associated downstream flood damages;

• Increase the overall surface water supply available from Nacimiento and San Antonio reservoirs by maximizing the opportunity for water to be collectively stored in the reservoirs;

• Improve the hydrologic balance of the groundwater basin in the Salinas Valley and reduce seawater intrusion;

• Continue to meet environmental flow requirements

• Minimize impact on existing hydroelectric production

• Preserve recreational opportunities in the reservoirs

• Protect agricultural viability and prime agricultural land
Interlake Tunnel overview

Facts:
• ~ 11,000 feet
• 10’ diameter
• Concrete lined
• Gravity flow tunnel
Conceptual Tunnel alignment option - MWH
Conceptual Tunnel alignment option - MJA
Conceptual tunnel alignment option
Conceptual tunnel alignment option

~ 620’
Conceptual tunnel alignment with SLO County parcels
Conceptual portals and tunnel profile

- Ground surface
- Tunnel
- Nacimiento portal
 - Portal Invert Elevation (~745’)
 - Spillway elevation ~ 800’
- San Antonio portal
 - Portal Invert Elevation (~695’)
 - Spillway elevation ~ 780’
Nacimiento intake structure concept
Interlake Tunnel Concept
Tunnel maximum flow capacity ~ 1,700 CFS

Nacimiento Reservoir

Nacimiento Intake Structure

Tunnel

San Antonio Reservoir

San Antonio Valve Facility

San Antonio Energy Dissipator

12,000’

10’
Construction Methodology Alternatives
Tunnel Boring Machine
TBM shield and trailing gear
TBM excavation and installation of pre-cast concrete segmental lining
Pre-cast segmental lining system
Roadheader excavator with ribs and lagging
Roadheader excavation
Shotcrete initial lining
Cast in place final lining
New Crystal Springs Bypass Tunnel

11’ diameter
Tunnel portal at San Antonio example
Interlake Tunnel – Program Schedule

Environmental Clearance
- Draft EIR
- Final EIR
- Public Meetings
- Regulatory Agency Coordination
- Permits Issued

Interim Financing
- AB 1585 financing ($25 mil)

Engineering/Design
- Tunnel Preliminary Engineering
- Spillway Preliminary Design (30%)
- Spillway Final Design
- Right of Way Easements
- Preparation of Engineer’s Report

Permanent Financing
- 218 Hearings and Election
- 218 Financing approved
- Tax assessment process
- Proposition 218 Funding
- Bond Sales
- Interlake Tunnel and Spillway Modification Construction

Critical funding milestone
5 Month Look Ahead Schedule

<table>
<thead>
<tr>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological and Cultural Resources - desktop research</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biological and Cultural Resources - field work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIDAR aerial survey</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrologic Modeling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILT Reservoir Operations Plan Operations Plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILT Reservoir Operations Policy Adopted</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USGS Modeling Consultant RFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB 1585 Funding Available</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key Activities:
- Biological studies and surveys
- LiDAR aerial survey of project site and connected rivers
- Finishing hydrologic modeling scenarios
- Development of ILT Reservoir Operations Policy and Plan
1. The Agency is committed to mitigating the potential impacts to private wells as a result of the construction and operation of the tunnel. The mitigation measures will include the implementation of construction techniques to avoid impacts to ground water during construction and operation of the tunnel to the extent feasible and provisions for other mitigation measures to fully address impacts to wells that can be proven to result from construction or operation of the tunnel project.
Resolution # 16R-03

To ensure that project–related impacts are minimized, the EIR will undertake analysis to identify impacts and appropriate mitigation. This will include preparation and implementation of a groundwater management plan, including:

1. a baseline inventory of wells and their existing condition;
2. preconstruction monitoring of wells;
3. groundwater modeling to evaluate potential groundwater inflows into the tunnel and probable effects to well;
4. consideration of the placement of supplemental storage tanks on property where it is determined that wells may be impacted to make up for potential shortfalls during construction;
5. development of a notification system for property owners to report any changes in well conditions during and after construction; and,
6. a contingency plan for the provision of supplemental water for wells that are determined to be affected by the project; this water could be a combination of potable water for human consumption and non-potable water for landscaping and livestock.
Resolution # 16R-03

If plan needs additional mitigation measures, those measures will be evaluated and brought back to the BOD for inclusion and approval.
Groundwater data collection initiative

A. Develop baseline conditions
B. Data for project design considerations
GROUNDWATER INVENTORY QUESTIONNAIRE

Accessor’s Parcel No. ________________________________ Cell Phone: __________________

Landowner/Tenant: ________________________________ Home Phone: __________________

Mailing Address: ________________________________

1. Are there wells or springs on the property? Yes No
 If yes, how many wells? ____________ If yes, how many springs? ____________
 (Please complete a questionnaire for each well or spring on the property.)

2. Is the residence: Owned Rented

3. What is the Groundwater Source? Well Spring

4. What is the water usage? Domestic Drinking Supply Household Use Only
 Landscape Irrigation Livestock Other:

5. What is the condition of the well or spring for the use designated above? Active Inactive
 If inactive, why? ___________________________

6. Does any other household/property use the same well Yes No or spring?
 If yes, please provide name and address:

 How many persons use the well or spring:

7. Is there water treatment on well or Yes No spring?
 If yes, what kind of treatment?

8. Describe the most recent maintenance performed on your well or pump:

9. Depth of Well: ________________________________ Diameter of Well: __________________
10. Static Water Level (and date last measured): __________________________

11. Flow Rate of well or spring, and date last evaluated (gpm) __________________________

12. Has the well or spring ever been sampled for quality? Yes No
 Do you still have the data? Yes No

13. In the user’s opinion, what is the quality of the water? __________________________
 List any complaints and describe the water: __________________________

14. Has the user ever noticed a change in water quality/quantity of the water in well or spring?
 Yes No
 If so, what was the change and when? __________________________

15. Does the water stain any surfaces? Yes No
 What color? _______ What kind of surfaces? __________________________

16. Has the well or spring ever gone dry? Yes No
 If so, how often does this happen? __________________________
 At what time of year does this normally occur? __________________________

17. Has a pump test ever been conducted on the well? Yes No
 If so, when and do you know what recharge quantity was estimated?

18. Is the well cased? Yes No If so, what depth? __________________________

19. Who drilled the well? __________________________ What year? __________
 Is a well log available? Yes No

20. If the water source is a spring, has it been properly developed? Yes No
 Explain: __________________________

21. How far away from point of use (i.e. residence or stock watering location) is the well or spring located?

 What direction? __________________________

22. Do you have any other relevant data for your well or spring? Yes No
 If so, please describe: __________________________

Well or Spring Location: USGS Quad __________________________
 1/4 1/4 Section _______ TWP _______ RGE _______
 Coordinates: Longitude _______ Latitude _______
Questions