SEASIDE GROUNDWATER BASIN WATERMASTER
SEAWATER SENTINEL WELLS PROJECT
Summary of Operations

For
Seaside Groundwater Basin Watermaster

Prepared by
Martin B. Feeney PG, CHg
with assistance from Pueblo Water Resources, Inc.

October 2007
FIGURE 1. Cross section location map.

Orthophoto base from HJW (1999), 1:36,000 scale imagery.
FIGURE 3. Geologic cross section A–A’

Geolectric data modified from Rosenberg and Feeney (2003), in Deep aquifer investigative study (WRIME, 2003, cross section A–A’).
Gravity data from USGS Open-File Report OF 02-373 (Langenheim and others, 2002)
Topography from USGS National Elevation Dataset (30-m resolution).

EXPLANATION

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qal</td>
<td>Alluvium (Holocene)</td>
</tr>
<tr>
<td>Qar</td>
<td>Aromas Sand (Pleistocene)</td>
</tr>
<tr>
<td>QTp</td>
<td>Paso Robles Formation (Pleistocene-Pliocene?)</td>
</tr>
<tr>
<td>Tp</td>
<td>Purisima Formation (Pliocene), subdivided into upper unit (Tpu) and lower unit (Tpl)</td>
</tr>
<tr>
<td>Tsm</td>
<td>Santa Margarita Sandstone (late Miocene)</td>
</tr>
<tr>
<td>Tm</td>
<td>Monterey Formation (middle Miocene)</td>
</tr>
<tr>
<td>Tus</td>
<td>Unnamed sandstone (middle Miocene)</td>
</tr>
<tr>
<td>Kgr</td>
<td>Granitic rocks (late Cretaceous)</td>
</tr>
</tbody>
</table>

Fault, half arrows show direction of vertical separation; A indicates horizontal movement away from viewer, T indicates movement toward viewer.

Contact

Electrical log resistivity (ohm-meters²/meter)

Water well—total depth, in feet

Scale

Vertical exaggeration = 10X

10000 feet

1000 feet